

Collecting High-frequency Mobile Sensor Data for Long-lasting Research Utility

Santosh Kumar

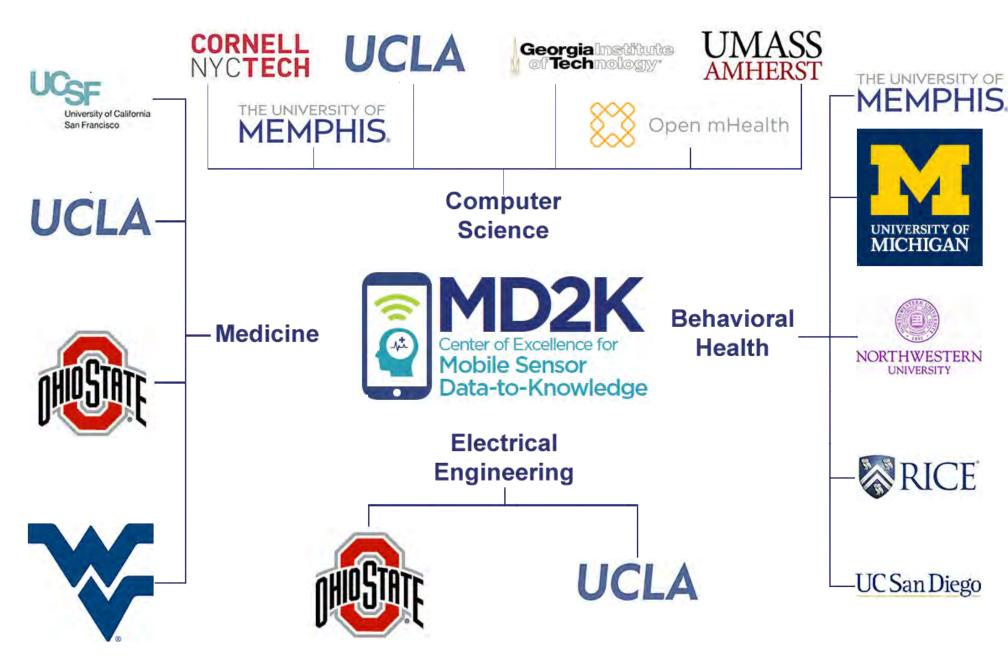
Director, MD2K Center of Excellence

Professor & Lillian and Morrie Moss Chair of Excellence

Department of Computer Science, University of Memphis

NIH Big Data to Knowledge (BD2K)

MD2K is an NIH Big Data to Knowledge (BD2K) Center of Excellence. Visit <u>www.md2k.org</u>.



Advancing biomedical discovery and improving health through mobile sensor big data

MD2K Multidisciplinary Team – 20 investigators

Data Science Research

- Santosh Kumar, *Memphis* (PI)
- Gregory Abowd, Polo Chau, and Jim Rehg, *Georgia Tech*
- Emre Ertin, *Ohio State*
- Deborah Estrin, Cornell Tech
- Tyson Condie, Mani
 Srivastava, UCLA
- Deepak Ganesan, Ben Marlin, UMass
- Susan Murphy, Harvard

Health Research

- William Abraham, *Ohio State*
- Inbal Nahum-Shani, *Michigan*
- Bonnie Spring, *Northwestern*
- Cho Lam, Dave Wetter, **Utah**
- Vivek Shetty, UCLA
- Ida Sim, *UC San Francisco*
- Jaqueline Kerr, **UC San Diego**
- Clay Marsh, West Virginia

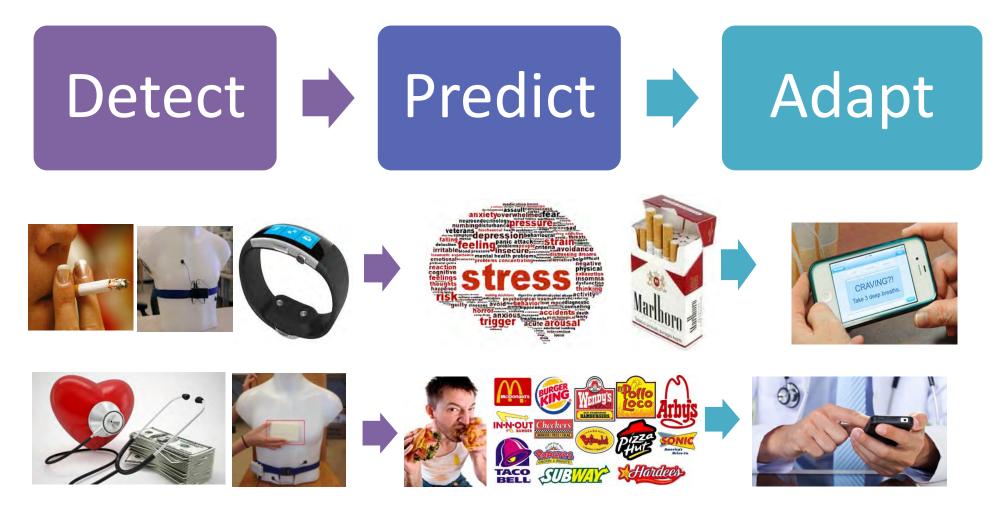
Memphis-based headquarter hosts a team of 10 grad students, a postdoc, 3 software engineers, and 6 staff members

Advancing biomedical discovery and improving health through mobile sensor big data

Measuring Exposures, Behaviors, and Outcomes

Advancing biomedical discovery and improving health through mobile sensor big data

MD2K Applications – Smoking Cessation & CHF



Advancing biomedical discovery and improving health through mobile sensor big data

Mobile Sensor Data Sources in MD2K

Advancing biomedical discovery and improving health through mobile sensor big data

Cornell Tech

Georgia Tech

U. Memphis

Northwestern

Ohio State

Open mHealth
Rice

UCLA

UC San Diego

UC San Francisco

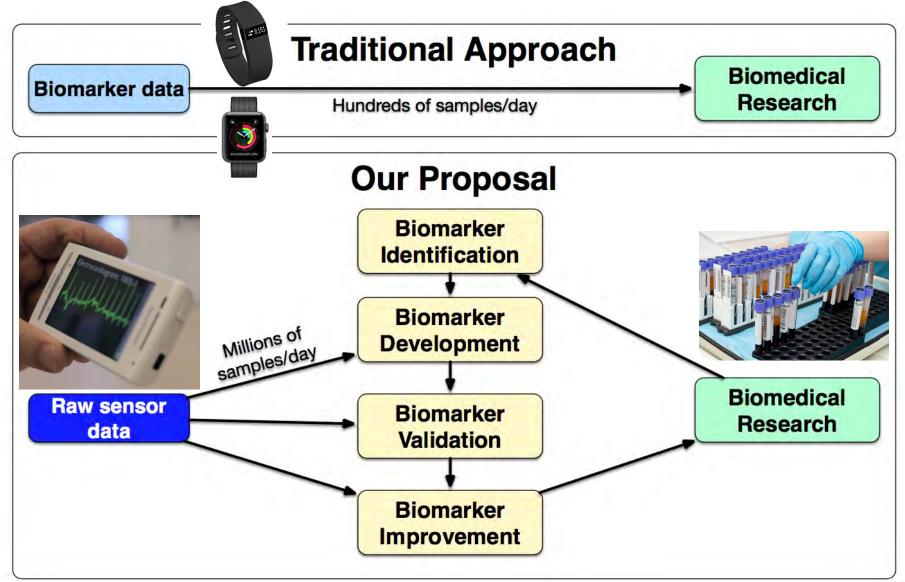
UMass Amherst

U. Michigan

WVU

ata-to-Knowledge

Utility of Collecting High-frequency Sensor Data



Data-to-Knowledge

Advancing biomedical discovery and improving health through mobile sensor big data

mHealth Biomarkers Developed in MD2K

OK Advancing biomedical discovery and improving health through mobile sensor big data

Data-to-Knowledge

Detecting First Lapses in Smoking Cessation

Saleheen, et. al., ACM UbiComp 2015

Modeling Challenges

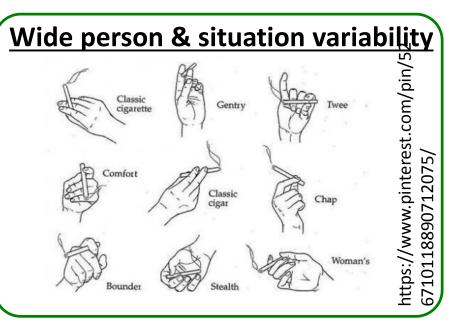
- 1. Ephemeral (very short duration)
 - 3~4 sec for each puff
 - 10,000 breaths in 10 hours
 - 2,000 hand to mouth gestures
 - But, only 6~7 positive instances
 - Need high recall & low false alarm

2. Numerous confounders

Eating, drinking, yawning

Main Results

- Applied on smoking cessation data from 61 smokers
- Detected 28 (out of 33) first lapses
- False alarm rate of 1/6 per day



Limitations

- Can't detect if sensor not worn
- Can't detect if data quality is poor
- Needs adaptation for e-cigarettes
- Difficult to validate temporal accuracy of smoking detection

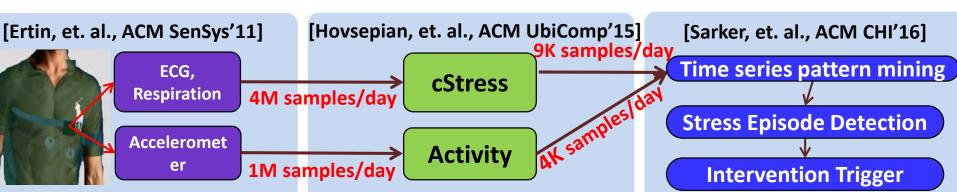
Advancing biomedical discovery and improving health through mobile sensor big data

Sensors-to-Markers-to-Interventions:

The Case of Sensor-Triggered Stress Intervention

SENSE

ANALYZE



+ High data rate streaming

- +Long battery life
- + High data yield
- + Real-time data quality screening

- + Personalized machine learning models
- + Biomarkers of health, behavior, and environment
- + Validated in lab and field

 Detect trend in noisy and rapidly varying time series

1-2 Interventions/day

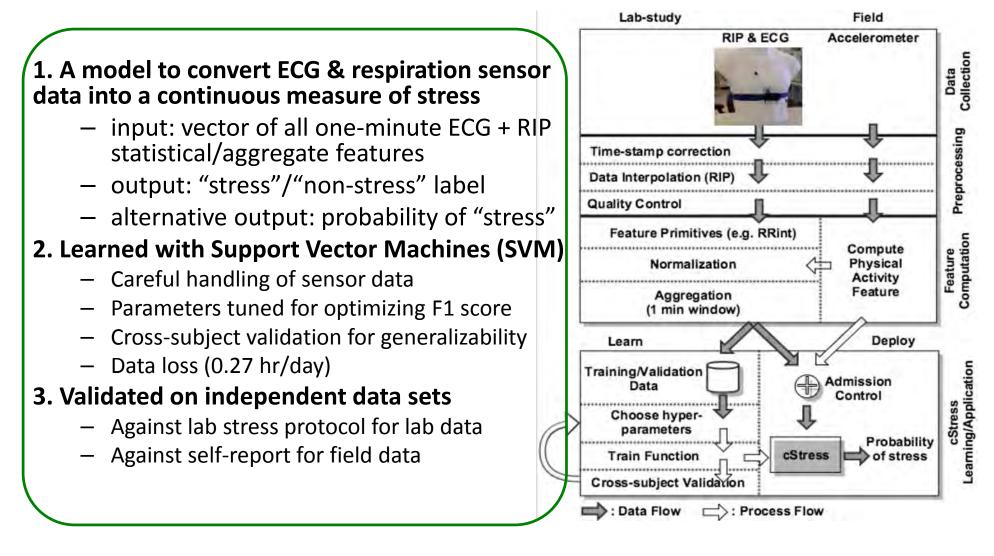
ACT

- + Robust to confounders and data losses
- + Adapt intervention prompts to current context (e.g., driving)

Advancing biomedical discovery and improving health through mobile sensor big data

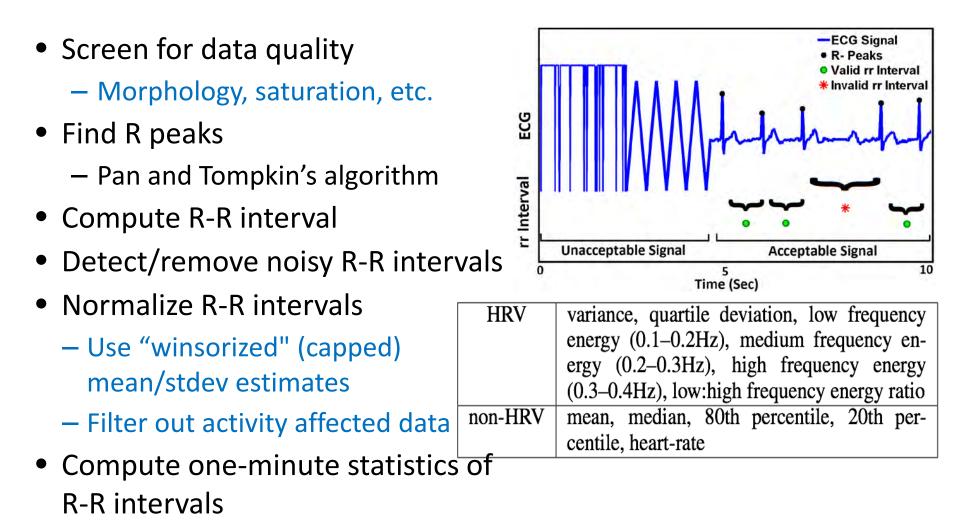
cStress: Continuous Measure of Stress

Hovsepian, et. al., ACM UbiComp 2015



Advancing biomedical discovery and improving health through mobile sensor big data

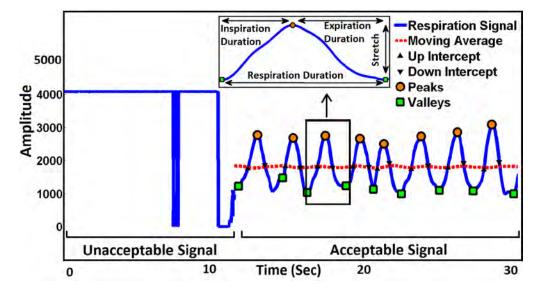
Feature Computation from ECG



Advancing biomedical discovery and improving health through mobile sensor big data

Feature Computation from Respiration

- Screen for data quality
 - Morphology, loosening
- Locate respiration cycles
- Detect/remove invalid cycles
 - Amplitude: > 20% of mean
 - Duration: 0.9 12.5 sec
- Compute base features
- Normalize base features
 As in ECG
- Compute one-minute statistics of base-features



ration, respiration duration, I:E du- percentile, quartile ration ratio, stretch, respiratory si- deviation	Base Features	Aggregations		
	ration, respiration duration, I:E du-	mean, median, 80th percentile, quartile deviation		

breath-rate², inspiration minute volume²

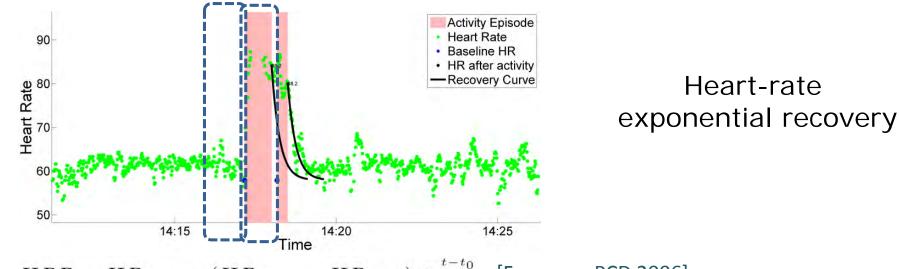
Advancing biomedical discovery and improving health through mobile sensor big data

Cornell Tech ♦ Georgia Tech ♦ U. Memphis ♦ Northwestern ♦ Ohio State ♦ Open mHealth

Rice ♦ UCLA ♦ UC San Diego ♦ UC San Francisco ♦ UMass Amherst ♦ U. Michigan

Minimizing the Data Loss due to Physical Activity

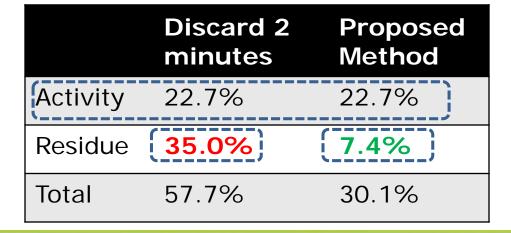
Sarker, et. al., ACM CHI 2016



 $HRR = HR_{Rest} + (HR_{Peak} - HR_{Rest})e^{-\frac{t-t_0}{\tau}}$ [Freeman, PCD 2006]

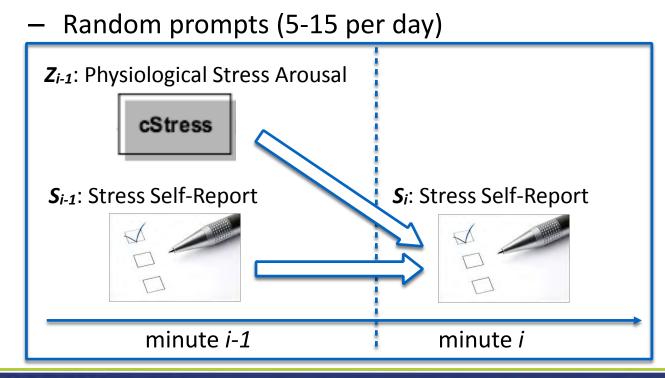
Data Loss due to Physical Activity

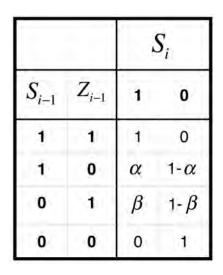
Recovered: 27.6%



Training & Validation Methods

- Lab: Model trained using lap protocol
 - Public speaking, mental arithmetic, and cold pressor sessions
- Field: A Bayesian Network model to map minute-level outputs from cStress to self-reports





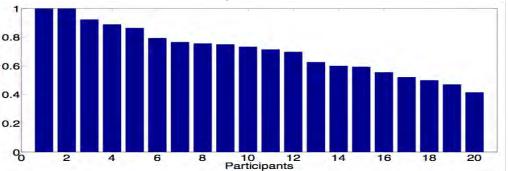
Validation in Independent Lab and Field Data

- Lab Validation: Cross-subject validation with n=21, 1600 minutes of lab data
- Stress sessions consist of public speaking, mental arithmetic, cold pressor

			Accuracy			Opti	mal hyper-parar	neters	
Feature Set	F1	AUC	Hit-rate	TPR	FPR	C. Kappa	С	γ	bias
All	0.81	0.96	0.93	0.84	0.05	0.77	90.5097	0.000345267	0.339329
ECG	0.78	0.95	0.92	0.72	0.05	0.73	2	0.00552427	0.340407
HRV	0.56	0.78	0.84	0.55	0.1	0.46	724.077	0.0220971	0.250926
RIP	0.75	0.93	0.90	0.83	0.09	0.69	1448.15	0.000488281	0.308312

- Field Validation: 1601 self-report EMA from *n*=23 over 7 days in the field
- Bayesian network model to map cStress onto self-reported stress data

	train	field
Median F1	0.75	0.71
Median AUC	0.85	0.60
Median Accuracy	0.9	0.72

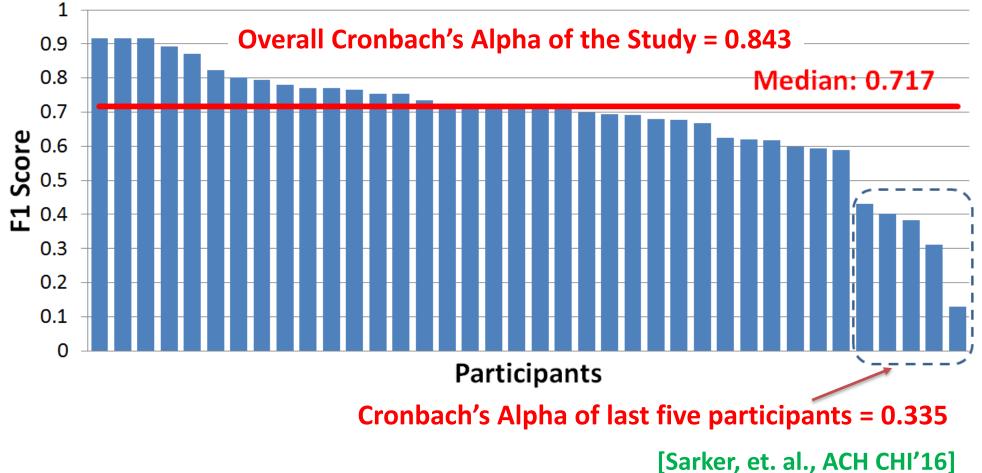


Advancing biomedical discovery and improving health through mobile sensor big data

Validation of cStress on 38 Drug Users Dataset

4 weeks of sensor wearing by polydrug users at NIDA IRP (PI: Dr. Kenzie Preston)

F1 Score —Median

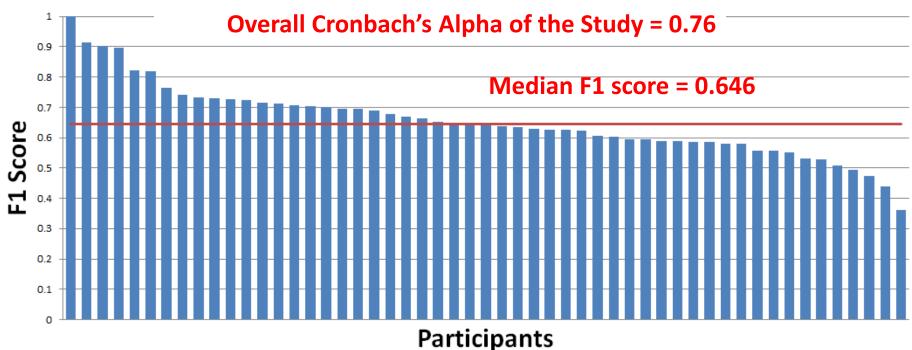


Advancing biomedical discovery and improving health through mobile sensor big data

Validation of cStress on Smoking Data

1 day pre-quit and 3 days post-quit sensor wearing by 61 newly abstinent smokers at UMN (PI: Dr. Mustafa al'Absi)

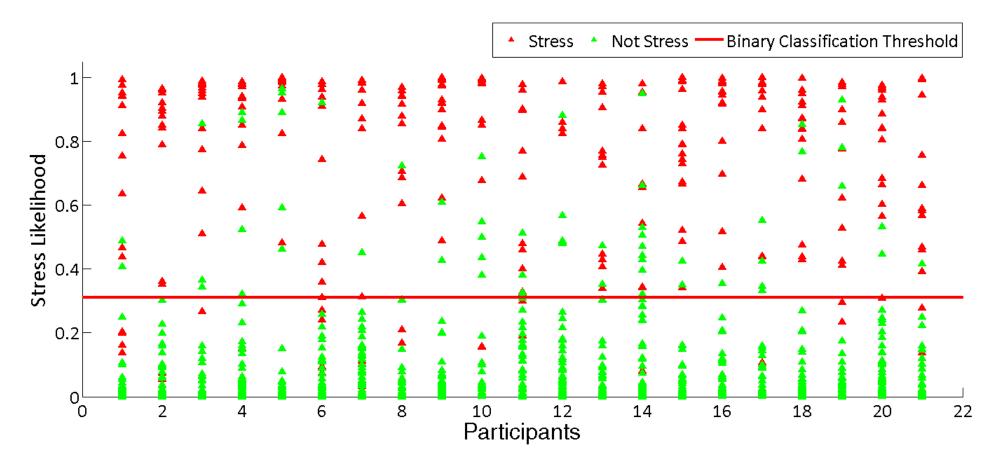
Participant F1 Score — Median F1 Score



- Lower F1 score than other datasets
 - Imputed missing data, but using simple carry-forward
 - Lower consistency of self-reports (0.76 vs. 0.843)

Advancing biomedical discovery and improving health through mobile sensor big data

Stress Likelihood Timeseries



Advancing biomedical discovery and improving health through mobile sensor big data

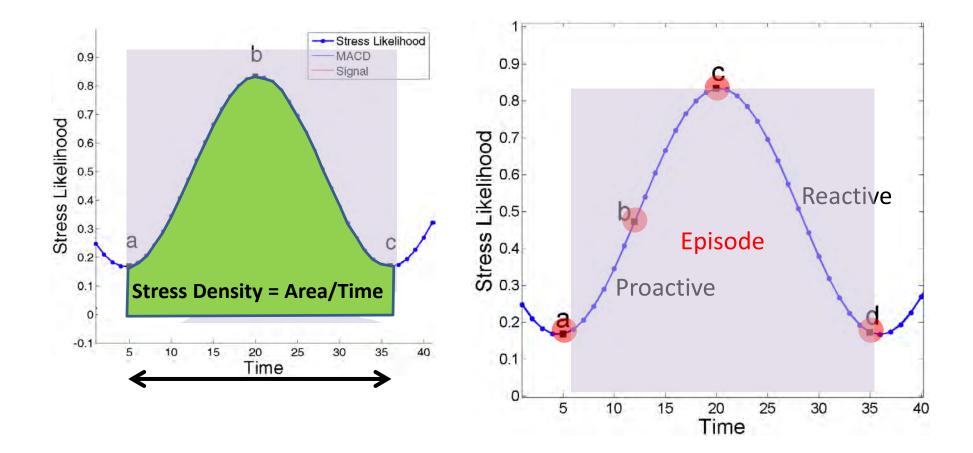
Mining Stress Episodes in cStress Time Series

Stress Likelihood → Stress Density

Mobile Senso

Data-to-Knowledge

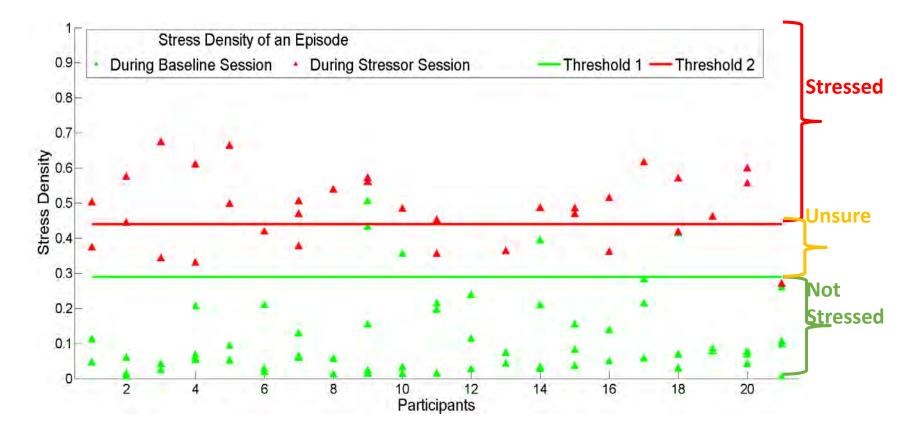
Options for Intervention Timing



Advancing biomedical discovery and improving health through mobile sensor big data

Generating Intervention Triggers - Model Training

Moving from a Single Threshold to Dual Thresholds To Optimize Confidence



Data-to-Knowledge

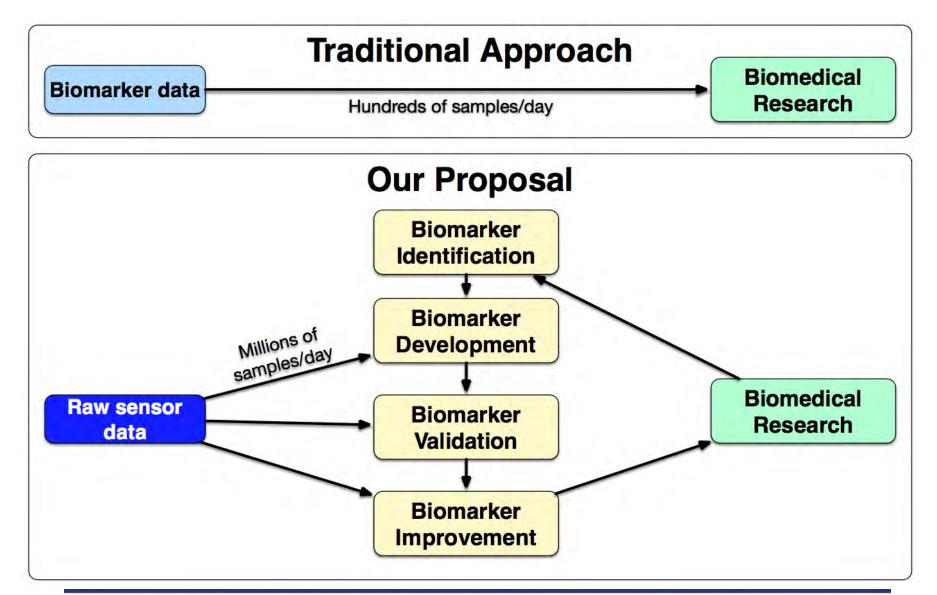
Advancing biomedical discovery and improving health through mobile sensor big data

Thresholds for Reactive Stress Intervention

		0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5				09 08 07 08 05 04 02 04 03 04 05 04 05 04 05 04 05 04 05 01 5 10 15 20 Tin	c c ne 25 30 35 40
		Precision and Recall					ision Recall
		95%	90%	85%		90%	85%
Lab Study	Threshold 1	0.29	0.29	0.29		0.36	0.36
(Stress Density)	Threshold 2	0.44	0.42	0.29		0.33	0.36
Field Study	Not-stress	28.3	28.3	28.3		28.9	29.8
	Unsure	2.7	2.5	0		0.9	0
(per day)	Stress	1.5	1.7	4.2		5.1	5.1

Advancing biomedical discovery and improving health through mobile sensor big data

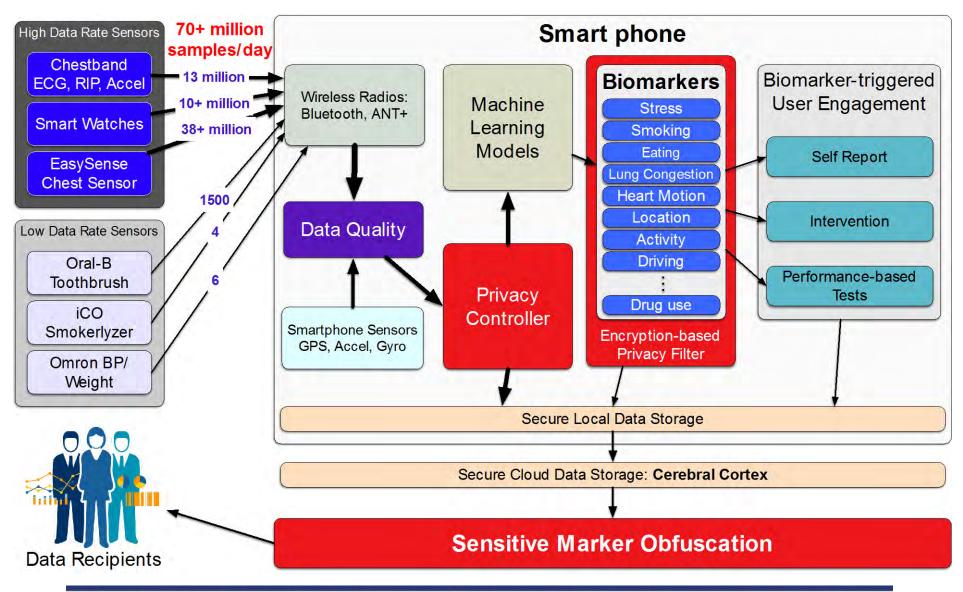
Utility of Collecting High-frequency Sensor Data



Data-to-Knowledge

Advancing biomedical discovery and improving health through mobile sensor big data

MD2K Mobile Software Platform (open-source)



Advancing biomedical discovery and improving health through mobile sensor big data

Key Capabilities of mCerebrum

- 1. Support for high-frequency streaming data
 - 800+ Hz for 70 million samples per day
- 2. Connectivity to diverse sensors and radio
 - ANT, Bluetooth, Bluetooth Low Energy (BLE), etc.
- 3. Continuous data collection and real-time data quality monitoring
- 4. Real-time computation of biomarkers
 - Stress, smoking, driving, activity, etc.
- 5. Biomarker-triggered notification/intervention

Advancing biomedical discovery and improving health through mobile sensor big data

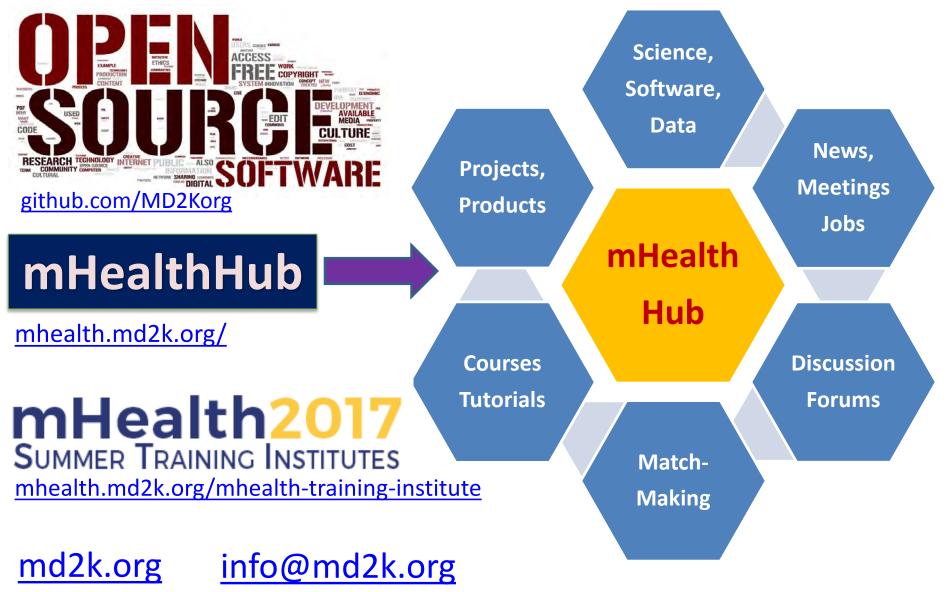
Field Studies Using MD2K Software

Study	Users	Person-Days	Samples (Billions)
Northwestern (Smoking and Eating)	225	3,150	136
Rice (Smoking)	300	4,200	182
Utah (Smoking)	300	4,200	182
Vermont (Smoking and fMRI)	90	1,260	55
Moffitt (Smoking and Stress)	24	336	15
Ohio State (Heart Failure)	225	6,750	224
UCLA (Oral Health)	162	29,160	968
Johns Hopkins (Cocaine Use)	25	350	18
Dartmouth (Behavior Change)	100	1400	58
Minnesota (Workplace Performance)	800	56,000	2,891
Total	2,251	106,806	4,729

Entire ecosystem (sensors, software, cloud) to be available end of 2017

Advancing biomedical discovery and improving health through mobile sensor big data Cornell Tech ♦ Georgia Tech ♦ U. Memphis ♦ Northwestern ♦ Ohio State ♦ Open mHealth Rice ♦ UCLA ♦ UC San Diego ♦ UC San Francisco ♦ UMass Amherst ♦ U. Michigan

MD2K Training Resources



Advancing biomedical discovery and improving health through mobile sensor big data

mProv: Provenance Cyberinfrastructure for Mobile Sensor Data

Due to lack of data sharing, everyone needs to collect their own data

Sharing of raw mobile sensor data can accelerate research, but provenance infrastructure is needed to enable reproducibility and comparative analysis

<u>Velocity</u>	<u>Variety</u>	<u>Volume</u>	<u>Variability</u>	<u>Veracity</u>	Validation
Hundreds of samples/sec per sensor	Tens of sensors per sensor	Gigabytes per day per person	Variations in attachment, placement, signal quality	Multiple biomarkers from same sensor	Sources of validation for specific biomarkers

Advancing biomedical discovery and improving health through mobile sensor big data

Indicators of Everyday Job Performance

Advancing biomedical discovery and improving health through mobile sensor big data

Healthier, Wealthier, and Happier You

Advancing biomedical discovery and improving health through mobile sensor big data Cornell Tech ♦ Georgia Tech ♦ U. Memphis ♦ Northwestern ♦ Ohio State ♦ Open mHealth Rice ♦ UCLA ♦ UC San Diego ♦ UC San Francisco ♦ UMass Amherst ♦ U. Michigan

For More Information

- MD2K website: <u>md2k.org</u>; Email: <u>info@md2k.org</u>
- mProv Website: <u>mprov.md2k.org/</u>
- Software Overview: <u>md2k.org/software/platform</u>
- Software Download: GitHub: <u>github.com/MD2Korg</u>
 - 20+ mCerebrum Android applications
- Software Documentation: <u>docs.md2k.org</u>
- Questions and Answers: <u>discuss.md2k.org</u>
- mHealthHUB: <u>mhealth.md2k.org/</u>
- mHTI: <u>mhealth.md2k.org/mhealth-training-institute</u>

Advancing biomedical discovery and improving health through mobile sensor big data